Member of the FM Global Group
FM Approvals
1151 Boston Providence Turnpike
P.O. Box 9102 Norwood, MA 02062 USA

T: $\mathbf{7 8 1} 7624300$ F: 781-762-9375 www.fmapprovals.com

CERTIFICATE OF COMPLIANCE

HAZARDOUS (CLASSIFIED) LOCATION ELECTRICAL EQUIPMENT

This certificate is issued for the following equipment:

3730-23-abcdef. e/p-Positioner.

IS / I,IIIIII / $1 /$ ABCDEFG / T6 Ta $=60^{\circ} \mathrm{C}$ - Addendum to EB 8384-2EN, pages 7 - 11; Entity; Type 4X I/ $0 / \mathrm{AEx}$ ia / IIC $/ \mathrm{T6} \mathrm{Ta}=60^{\circ} \mathrm{C}$ - Addendum to EB 8384-2EN, pages 7-11; Entity; Type 4X
$\mathrm{NI} / \mathrm{I} / 2 / \mathrm{ABCD} / \mathrm{T} 6 \mathrm{Ta}=60^{\circ} \mathrm{C}$; S / II,III / $2 / \mathrm{FG} / \mathrm{T} 6 \mathrm{Ta}=60^{\circ} \mathrm{C}$; Type 4X

Entity Parameters:

Signal Circuit:

$\mathrm{V}_{\text {max }}\left(\mathrm{U}_{\mathrm{i}}\right)=28 \mathrm{~V}, \mathrm{I}_{\text {max }}\left(\mathrm{I}_{\mathrm{i}}\right)=115 \mathrm{~mA}, \mathrm{P}_{\text {max }}\left(\mathrm{P}_{\mathrm{i}}\right)=1 \mathrm{~W}, \mathrm{C}_{\mathrm{i}}=5.3 \mathrm{nF}, \mathrm{L}_{\mathrm{i}}=0$.
Position Indicator:
$\mathrm{V}_{\text {max }}\left(\mathrm{U}_{\mathrm{i}}\right)=28 \mathrm{~V}, \mathrm{I}_{\text {max }}\left(\mathrm{I}_{\mathrm{i}}\right)=115 \mathrm{~mA}, \mathrm{P}_{\text {max }}\left(\mathrm{P}_{\mathrm{i}}\right)=1 \mathrm{~W}, \mathrm{C}_{\mathrm{i}}=5.3 \mathrm{nF}, \mathrm{L}_{\mathrm{i}}=0$.

Software Limit Switches:

$\mathrm{V}_{\text {max }}\left(\mathrm{U}_{\mathrm{i}}\right)=20 \mathrm{~V}, \mathrm{I}_{\text {max }}\left(\mathrm{I}_{\mathrm{i}}\right)=60 \mathrm{~mA}, \mathrm{P}_{\text {max }}\left(\mathrm{P}_{\mathrm{i}}\right)=250 \mathrm{~mW}, \mathrm{C}_{\mathrm{i}}=5.3 \mathrm{nF}, \mathrm{L}_{\mathrm{i}}=0$.
Inductive Limit Switch:
$\mathrm{V}_{\text {max }}(\mathrm{Ui})=16 \mathrm{~V}, \mathrm{I}_{\text {max }}\left(\mathrm{l}_{\mathrm{i}}\right)=25 \mathrm{~mA}, \mathrm{P}_{\text {max }}\left(\mathrm{P}_{\mathrm{i}}\right)=64 \mathrm{~mW}, \mathrm{C}_{\mathrm{i}}=60 \mathrm{nF}, \mathrm{L}_{\mathrm{i}}=200 \mu \mathrm{H}$,
$\mathrm{V}_{\text {max }}(\mathrm{Ui})=16 \mathrm{~V}, \mathrm{I}_{\text {max }}\left(\mathrm{I}_{\mathrm{i}}\right)=52 \mathrm{~mA}, \mathrm{P}_{\text {max }}\left(\mathrm{P}_{\mathrm{i}}\right)=169 \mathrm{~mW}, \mathrm{C}_{\mathrm{i}}=60 \mathrm{nF}, \mathrm{L}_{\mathrm{i}}=200 \mu \mathrm{H}$.
Forced Venting Function (Solenoid Valve):
$\mathrm{V}_{\text {max }}\left(\mathrm{U}_{\mathrm{i}}\right)=28 \mathrm{~V}, \mathrm{I}_{\text {max }}\left(\mathrm{l}_{\mathrm{i}}\right)=115 \mathrm{~mA}, \mathrm{P}_{\text {max }}\left(\mathrm{P}_{\mathrm{i}}\right)=500 \mathrm{~mW}, \mathrm{C}_{\mathrm{i}}=5.3 \mathrm{nF}, \mathrm{L}_{\mathrm{i}}=0$.
Fault Alarm Output:
$\mathrm{V}_{\text {max }}\left(\mathrm{U}_{\mathrm{i}}\right)=20 \mathrm{~V}, \mathrm{I}_{\text {max }}\left(\mathrm{I}_{\mathrm{i}}\right)=60 \mathrm{~mA}, \mathrm{P}_{\text {max }}\left(\mathrm{P}_{\mathrm{i}}\right)=250 \mathrm{~mW}, \mathrm{C}_{\mathrm{i}}=5.3 \mathrm{nF}, \mathrm{L}_{\mathrm{i}}=0$.
Programming Jack BU:
$\mathrm{V}_{\text {max }}\left(\mathrm{U}_{\mathrm{i}}\right)=20 \mathrm{~V}, \mathrm{I}_{\text {max }}\left(\mathrm{I}_{\mathrm{i}}\right)=60 \mathrm{~mA}, \mathrm{P}_{\text {max }}\left(\mathrm{P}_{\mathrm{i}}\right)=250 \mathrm{~mW}, \mathrm{C}_{\mathrm{i}}=0, \mathrm{~L}_{\mathrm{i}}=0$,
$\mathrm{V}_{\text {oc }}\left(\mathrm{U}_{0}\right)=6.51 \mathrm{~V}, \mathrm{I}_{\mathrm{sc}}\left(\mathrm{I}_{\mathrm{o}}\right)=57.5 \mathrm{~mA}, \mathrm{C}_{\mathrm{a}}\left(\mathrm{C}_{0}\right)=22 \mu \mathrm{~F}, \mathrm{~L}_{\mathrm{a}}\left(\mathrm{L}_{0}\right)=10 \mathrm{mH}$.

External Position Sensor:

$\mathrm{V}_{\mathrm{oc}}\left(\mathrm{U}_{0}\right)=6.51 \mathrm{~V}, \mathrm{I}_{\mathrm{sc}}\left(\mathrm{I}_{0}\right)=56 \mathrm{~mA}, \mathrm{C}_{\mathrm{a}}\left(\mathrm{C}_{0}\right)=11.2 \mu \mathrm{~F}, \mathrm{~L}_{\mathrm{a}}\left(\mathrm{L}_{0}\right)=11.6 \mathrm{mH}$.
Leakage Detection:
$\mathrm{V}_{\text {max }}\left(\mathrm{U}_{\mathrm{i}}\right)=28 \mathrm{~V}, \mathrm{I}_{\text {max }}\left(\mathrm{i}_{\mathrm{i}}\right)=100 \mathrm{~mA}, \mathrm{P}_{\text {max }}\left(\mathrm{P}_{\mathrm{i}}\right)=0.7 \mathrm{~W}, \mathrm{C}_{\mathrm{i}}=5.3 \mathrm{nF}, \mathrm{L}_{\mathrm{i}}=0$.
Binary Input:
$\mathrm{V}_{\text {max }}\left(\mathrm{U}_{\mathrm{i}}\right)=28 \mathrm{~V}, \mathrm{I}_{\text {max }}\left(\mathrm{I}_{\mathrm{i}}\right)=100 \mathrm{~mA}, \mathrm{P}_{\text {max }}\left(\mathrm{P}_{\mathrm{i}}\right)=0.7 \mathrm{~W}, \mathrm{C}_{\mathrm{i}}=56.3 \mathrm{nF}, \mathrm{L}_{\mathrm{i}}=0$.
$\mathrm{a}=$ Limit Switches 0 (not provided), or 1 (provided).
$\mathrm{b}=$ Solenoid valve 0 (not provided), or 4 (provided).
c = Positioner indicator 0 (not provided), or 1 (provided).
d = External position sensor 0 (not provided), or 1 (provided).
$\mathrm{e}=$ Leakage Detection: 0 (not provided), or 1 (provided).
f = Binary Input: 0 (not provided), or 2 (provided).

3730-33-abcdef. Hart Capable Positioner.

IS / I,IIIIII / 1 / ABCDEFG / T6 Ta = $60^{\circ} \mathrm{C}$ - Addendum to EB 8384-3EN, pages 7 - 11; Entity; Type 4X I/ $0 /$ AEx ia / IIC $/ \mathrm{T6} \mathrm{Ta}=60^{\circ} \mathrm{C}$ - Addendum to EB 8384-3EN, pages 7-11; Entity; Type 4X
$\mathrm{NI} / \mathrm{I} / 2 / \mathrm{ABCD} / \mathrm{T} 6 \mathrm{Ta}=60^{\circ} \mathrm{C} ; \mathrm{S} / \mathrm{II} / 2 / \mathrm{FG} / \mathrm{T6} \mathrm{Ta}=60^{\circ} \mathrm{C}$; Type 4X

Entity Parameters:

Signal Circuit:

$\mathrm{V}_{\text {max }}\left(\mathrm{U}_{\mathrm{i}}\right)=28 \mathrm{~V}, \mathrm{I}_{\text {max }}\left(\mathrm{I}_{\mathrm{i}}\right)=115 \mathrm{~mA}, \mathrm{P}_{\text {max }}\left(\mathrm{P}_{\mathrm{i}}\right)=1 \mathrm{~W}, \mathrm{C}_{\mathrm{i}}=35 \mathrm{nF}, \mathrm{L}_{\mathrm{i}}=0$.
Position Indicator:
$\mathrm{V}_{\text {max }}\left(\mathrm{U}_{\mathrm{i}}\right)=28 \mathrm{~V}, \mathrm{I}_{\text {max }}\left(\mathrm{I}_{\mathrm{i}}\right)=115 \mathrm{~mA}, \mathrm{P}_{\text {max }}\left(\mathrm{P}_{\mathrm{i}}\right)=1 \mathrm{~W}, \mathrm{C}_{\mathrm{i}}=5.3 \mathrm{nF}, \mathrm{L}_{\mathrm{i}}=0$.
Software Limit Switch:
$\mathrm{V}_{\text {max }}\left(\mathrm{U}_{\mathrm{i}}\right)=20 \mathrm{~V}, \mathrm{I}_{\text {max }}\left(\mathrm{I}_{\mathrm{i}}\right)=60 \mathrm{~mA}, \mathrm{P}_{\text {max }}\left(\mathrm{P}_{\mathrm{i}}\right)=250 \mathrm{~mW}, \mathrm{C}_{\mathrm{i}}=13.4 \mathrm{nF}, \mathrm{L}_{\mathrm{i}}=0$.
Inductive Limit Switch:
$\mathrm{V}_{\text {max }}\left(\mathrm{U}_{\mathrm{i}}\right)=16 \mathrm{~V}, \mathrm{I}_{\text {max }}\left(\mathrm{I}_{\mathrm{i}}\right)=25 \mathrm{~mA}, \mathrm{P}_{\text {max }}\left(\mathrm{P}_{\mathrm{i}}\right)=64 \mathrm{~mW}, \mathrm{C}_{\mathrm{i}}=60 \mathrm{nF}, \mathrm{L}_{\mathrm{i}}=100 \mu \mathrm{H}$,
$\mathrm{V}_{\text {max }}\left(\mathrm{U}_{\mathrm{i}}\right)=16 \mathrm{~V}, \mathrm{I}_{\text {max }}\left(\mathrm{I}_{\mathrm{i}}\right)=52 \mathrm{~mA}, \mathrm{P}_{\text {max }}\left(\mathrm{P}_{\mathrm{i}}\right)=169 \mathrm{~mW}, \mathrm{C}_{\mathrm{i}}=60 \mathrm{nF}, \mathrm{L}_{\mathrm{i}}=100 \mu \mathrm{H}$.

Forced Venting Function:

$\mathrm{V}_{\text {max }}\left(\mathrm{U}_{\mathrm{i}}\right)=28 \mathrm{~V}, \mathrm{I}_{\text {max }}\left(\mathrm{I}_{\mathrm{i}}\right)=115 \mathrm{~mA}, \mathrm{P}_{\text {max }}\left(\mathrm{P}_{\mathrm{i}}\right)=0.5 \mathrm{~W}, \mathrm{C}_{\mathrm{i}}=5.3 \mathrm{nF}, \mathrm{L}_{\mathrm{i}}=0$.

Fault Signal:

$\mathrm{V}_{\text {max }}\left(\mathrm{U}_{\mathrm{i}}\right)=20 \mathrm{~V}, \mathrm{I}_{\text {max }}\left(\mathrm{I}_{\mathrm{i}}\right)=60 \mathrm{~mA}, \mathrm{P}_{\text {max }}\left(\mathrm{P}_{\mathrm{i}}\right)=250 \mathrm{~mW}, \mathrm{C}_{\mathrm{i}}=13.4 \mathrm{nF}, \mathrm{L}_{\mathrm{i}}=0$.
Serial Interface Bill:
$\mathrm{V}_{\text {max }}\left(\mathrm{U}_{\mathrm{i}}\right)=16 \mathrm{~V}, \mathrm{I}_{\text {max }}\left(\mathrm{I}_{\mathrm{i}}\right)=25 \mathrm{~mA}, \mathrm{P}_{\text {max }}\left(\mathrm{P}_{\mathrm{i}}\right)=250 \mathrm{~mW}, \mathrm{C}_{\mathrm{i}}=0, \mathrm{~L}_{\mathrm{i}}=0$,
$\mathrm{V}_{\text {oc }}\left(\mathrm{U}_{0}\right)=7.88 \mathrm{~V}, \mathrm{I}_{\mathrm{sc}}\left(\mathrm{I}_{0}\right)=61.8 \mathrm{~mA}, \mathrm{P}_{\text {max }} \mathrm{P}_{\mathrm{o}}=120 \mathrm{~mW}, \mathrm{C}_{\mathrm{a}}\left(\mathrm{C}_{0}\right)=0.65 \mu \mathrm{~F}, \mathrm{~L}_{\mathrm{a}}\left(\mathrm{L}_{0}\right)=10 \mathrm{mH}$.

External Position Sensor:

$\mathrm{V}_{\text {oc }}\left(\mathrm{U}_{\mathrm{o}}\right)=7.88 \mathrm{~V}, \mathrm{I}_{\mathrm{sc}}\left(\mathrm{I}_{\mathrm{o}}\right)=61 \mathrm{~mA}, \mathrm{P}_{\max }\left(\mathrm{P}_{\mathrm{o}}\right)=120 \mathrm{~mW}, \mathrm{C}_{\mathrm{a}}\left(\mathrm{C}_{0}\right)=0.66 \mu \mathrm{~F}, \mathrm{~L}_{\mathrm{a}}\left(\mathrm{L}_{0}\right)=10 \mathrm{mH}$, or $\mathrm{C}_{\mathrm{i}}=730 \mathrm{nF}$, $\mathrm{L}_{\mathrm{i}}=370 \mu \mathrm{H}$.

Leakage Detection:

$\mathrm{V}_{\text {max }}\left(\mathrm{U}_{\mathrm{i}}\right)=28 \mathrm{~V}, \mathrm{I}_{\text {max }}\left(\mathrm{I}_{\mathrm{i}}\right)=100 \mathrm{~mA}, \mathrm{P}_{\text {max }}\left(\mathrm{P}_{\mathrm{i}}\right)=0.7 \mathrm{~W}, \mathrm{C}_{\mathrm{i}}=5.3 \mathrm{nF}, \mathrm{L}_{\mathrm{i}}=0$.

Binary Input:

$\mathrm{V}_{\text {max }}\left(\mathrm{U}_{\mathrm{i}}\right)=28 \mathrm{~V}, \mathrm{I}_{\text {max }}\left(\mathrm{I}_{\mathrm{i}}\right)=100 \mathrm{~mA}, \mathrm{P}_{\text {max }}\left(\mathrm{P}_{\mathrm{i}}\right)=0.7 \mathrm{~W}, \mathrm{C}_{\mathrm{i}}=56.3 \mathrm{nF}, \mathrm{L}_{\mathrm{i}}=0$.
$\mathrm{a}=$ Proximity Switches 0 (not provided), or 1 (provided).
$\mathrm{b}=$ Force venting Function 0 (not provided), or 4 (24 Vdc provided).
c = Position indicator 0 (not provided), or 1 (provided).
d = External position sensor 0 (not provided), or 1 (provided).
$\mathrm{e}=$ Leakage Detection: 0 (not provided), or 1 (provided).
$\mathrm{f}=$ Binary Input: 0 (not provided), or 2 (provided).

3730-6-130abcdOef00g. Digital Hart Positioner.

IS / I,IIIIII / 1 / ABCDEFG / T6 Ta $=60^{\circ} \mathrm{C}$ - Addendum to EB 8384-6 EN, pages 7-12; Entity; Type 4X
I/ 0 / AEx ia / IIC / T6 Ta $=60^{\circ} \mathrm{C}$ - Addendum to EB 8384-6 EN, pages 7-12; Entity; Type 4X
$\mathrm{NI} / \mathrm{I} / 2 / \mathrm{ABCD} / \mathrm{T} 6 \mathrm{Ta}=60^{\circ} \mathrm{C}$ - Addendum to EB 8384-6 EN, pages 7-12; NIFW; Type 4X
S / II, III / 2 / EFG / T6 Ta = $60^{\circ} \mathrm{C}$ - Addendum to EB 8384-6 EN, pages 7 - 12; NIFW; Type 4X

Entity Parameters:

Signal Circuit:

$\mathrm{V}_{\text {max }}\left(\mathrm{U}_{\mathrm{i}}\right)=28 \mathrm{~V}, \mathrm{I}_{\text {max }}\left(\mathrm{I}_{\mathrm{i}}\right)=115 \mathrm{~mA}, \mathrm{P}_{\text {max }}\left(\mathrm{P}_{\mathrm{i}}\right)=1 \mathrm{~W}, \mathrm{C}_{\mathrm{i}}=5.3 \mathrm{nF}, \mathrm{L}_{\mathrm{i}}=0$.
$\mathrm{V}_{\text {max }}\left(\mathrm{U}_{\mathrm{i}}\right)=32 \mathrm{~V}, \mathrm{I}_{\text {max }}\left(\mathrm{I}_{\mathrm{i}}\right)=87.5 \mathrm{~mA}, \mathrm{P}_{\text {max }}\left(\mathrm{P}_{\mathrm{i}}\right)=1 \mathrm{~W}, \mathrm{C}_{\mathrm{i}}=5.3 \mathrm{nF}, \mathrm{L}_{\mathrm{i}}=0$.
Position Indicator:
$\mathrm{V}_{\text {max }}\left(\mathrm{U}_{\mathrm{i}}\right)=28 \mathrm{~V}, \mathrm{I}_{\text {max }}\left(\mathrm{I}_{\mathrm{i}}\right)=115 \mathrm{~mA}, \mathrm{P}_{\text {max }}\left(\mathrm{P}_{\mathrm{i}}\right)=1 \mathrm{~W}, \mathrm{C}_{\mathrm{i}}=5.3 \mathrm{nF}, \mathrm{L}_{\mathrm{i}}=0$.
$\mathrm{V}_{\text {max }}\left(\mathrm{U}_{\mathrm{i}}\right)=32 \mathrm{~V}, \mathrm{I}_{\text {max }}\left(\mathrm{I}_{\mathrm{i}}\right)=87.5 \mathrm{~mA}, \mathrm{P}_{\text {max }}\left(\mathrm{P}_{\mathrm{i}}\right)=1 \mathrm{~W}, \mathrm{C}_{\mathrm{i}}=5.3 \mathrm{nF}, \mathrm{L}_{\mathrm{i}}=0$.

Software Limit Switch:

$\mathrm{V}_{\text {max }}\left(\mathrm{U}_{\mathrm{i}}\right)=20 \mathrm{~V}, \mathrm{I}_{\text {max }}\left(\mathrm{I}_{\mathrm{i}}\right)=60 \mathrm{~mA}, \mathrm{P}_{\text {max }}\left(\mathrm{P}_{\mathrm{i}}\right)=250 \mathrm{~mW}, \mathrm{C}_{\mathrm{i}}=5.3 \mathrm{nF}, \mathrm{L}_{\mathrm{i}}=0$.
Inductive Limit Switch:
$\mathrm{V}_{\text {max }}\left(\mathrm{U}_{\mathrm{i}}\right)=16 \mathrm{~V}, \mathrm{I}_{\text {max }}\left(\mathrm{I}_{\mathrm{i}}\right)=25 \mathrm{~mA}, \mathrm{P}_{\text {max }}\left(\mathrm{P}_{\mathrm{i}}\right)=64 \mathrm{~mW}, \mathrm{C}_{\mathrm{i}}=30 \mathrm{nF}, \mathrm{L}_{\mathrm{i}}=100 \mu \mathrm{H}$.
$\mathrm{V}_{\text {max }}\left(\mathrm{U}_{\mathrm{i}}\right)=16 \mathrm{~V}, \mathrm{I}_{\text {max }}\left(\mathrm{I}_{\mathrm{i}}\right)=52 \mathrm{~mA}, \mathrm{P}_{\text {max }}\left(\mathrm{P}_{\mathrm{i}}\right)=169 \mathrm{~mW}, \mathrm{C}_{\mathrm{i}}=30 \mathrm{nF}, \mathrm{L}_{\mathrm{i}}=100 \mu \mathrm{H}$.
Forced Venting Function:
$\mathrm{V}_{\text {max }}\left(\mathrm{U}_{\mathrm{i}}\right)=28 \mathrm{~V}, \mathrm{I}_{\text {max }}\left(\mathrm{I}_{\mathrm{i}}\right)=115 \mathrm{~mA}, \mathrm{P}_{\text {max }}\left(\mathrm{P}_{\mathrm{i}}\right)=1 \mathrm{~W}, \mathrm{C}_{\mathrm{i}}=5.3 \mathrm{nF}, \mathrm{L}_{\mathrm{i}}=0$.
$\mathrm{V}_{\text {max }}\left(\mathrm{U}_{\mathrm{i}}\right)=32 \mathrm{~V}, \mathrm{I}_{\text {max }}\left(\mathrm{I}_{\mathrm{i}}\right)=87.5 \mathrm{~mA}, \mathrm{P}_{\text {max }}\left(\mathrm{P}_{\mathrm{i}}\right)=1 \mathrm{~W}, \mathrm{C}_{\mathrm{i}}=5.3 \mathrm{nF}, \mathrm{L}_{\mathrm{i}}=0$.
Fault Signal:
$\mathrm{V}_{\text {max }}\left(\mathrm{U}_{\mathrm{i}}\right)=20 \mathrm{~V}, \mathrm{I}_{\text {max }}\left(\mathrm{I}_{\mathrm{i}}\right)=60 \mathrm{~mA}, \mathrm{P}_{\text {max }}\left(\mathrm{P}_{\mathrm{i}}\right)=250 \mathrm{~mW}, \mathrm{C}_{\mathrm{i}}=5.3 \mathrm{nF}, \mathrm{L}_{\mathrm{i}}=0$.

Serial Interface Bill:

$\mathrm{V}_{\text {max }}\left(\mathrm{U}_{\mathrm{i}}\right)=20 \mathrm{~V}, \mathrm{I}_{\text {max }}\left(\mathrm{I}_{\mathrm{i}}\right)=60 \mathrm{~mA}, \mathrm{P}_{\text {max }}\left(\mathrm{P}_{\mathrm{i}}\right)=200 \mathrm{~mW}, \mathrm{C}_{\mathrm{i}}=0, \mathrm{~L}_{\mathrm{i}}=0$,
$\mathrm{V}_{\text {oc }}\left(\mathrm{U}_{0}\right)=7.88 \mathrm{~V}, \mathrm{I}_{\mathrm{sc}}\left(\mathrm{I}_{0}\right)=69.2 \mathrm{~mA}, \mathrm{P}_{\max } \mathrm{P}_{\mathrm{o}}=137 \mathrm{~mW}, \mathrm{C}_{\mathrm{a}}\left(\mathrm{C}_{0}\right)=650 \mathrm{nF}, \mathrm{L}_{\mathrm{a}}\left(\mathrm{L}_{0}\right)=10 \mathrm{mH}$.

External Position Sensor:

$\mathrm{V}_{\text {oc }}\left(\mathrm{U}_{\mathrm{o}}\right)=7.88 \mathrm{~V}, \mathrm{I}_{\mathrm{sc}}\left(\mathrm{I}_{\mathrm{o}}\right)=13.2 \mathrm{~mA}, \mathrm{P}_{\max }\left(\mathrm{P}_{\mathrm{o}}\right)=27 \mathrm{~mW}, \mathrm{C}_{\mathrm{a}}\left(\mathrm{C}_{0}\right)=1 \mu \mathrm{~F}, \mathrm{~L}_{\mathrm{a}}\left(\mathrm{L}_{\mathrm{o}}\right)=10 \mathrm{mH}$, or $\mathrm{C}_{\mathrm{i}}=66 \mathrm{nF}, \mathrm{L}_{\mathrm{i}}=$ $370 \mu \mathrm{H}$.

Leakage Detection:

$\mathrm{C}_{\mathrm{i}}=5.3 \mathrm{nF}, \mathrm{C}_{0}=1.4 \mathrm{nF}$.

Binary Input:

$\mathrm{V}_{\text {max }}\left(\mathrm{U}_{\mathrm{i}}\right)=30 \mathrm{~V}, \mathrm{I}_{\text {max }}\left(\mathrm{l}_{\mathrm{i}}\right)=100 \mathrm{~mA}, \mathrm{C}_{\mathrm{i}}=56.3 \mathrm{nF}, \mathrm{L}_{\mathrm{i}}=0$.

Non-Incendive Field Wiring Parameters:

Signal Circuit:

$\mathrm{V}_{\text {max }}\left(\mathrm{U}_{\mathrm{i}}\right)=32 \mathrm{~V}, \mathrm{C}_{\mathrm{i}}=5.3 \mathrm{nF}, \mathrm{L}_{\mathrm{i}}=0$.
Position Indicator:
$\mathrm{V}_{\text {max }}\left(\mathrm{U}_{\mathrm{i}}\right)=32 \mathrm{~V}, \mathrm{C}_{\mathrm{i}}=5.3 \mathrm{nF}, \mathrm{L}_{\mathrm{i}}=0$.
Software Limit Switch:
$\mathrm{V}_{\text {max }}\left(\mathrm{U}_{\mathrm{i}}\right)=20 \mathrm{~V}, \mathrm{C}_{\mathrm{i}}=5.3 \mathrm{nF}, \mathrm{L}_{\mathrm{i}}=0$.
Inductive Limit Switch:
$\mathrm{V}_{\text {max }}\left(\mathrm{U}_{\mathrm{i}}\right)=16 \mathrm{~V}, \mathrm{C}_{\mathrm{i}}=30 \mathrm{nF}, \mathrm{L}_{\mathrm{i}}=100 \mu \mathrm{H}$.
Forced Venting Function:
$\mathrm{V}_{\text {max }}\left(\mathrm{U}_{\mathrm{i}}\right)=32 \mathrm{~V}, \mathrm{C}_{\mathrm{i}}=5.3 \mathrm{nF}, \mathrm{L}_{\mathrm{i}}=0$.

Fault Signal:

$\mathrm{V}_{\text {max }}\left(\mathrm{U}_{\mathrm{i}}\right)=20 \mathrm{~V}, \mathrm{C}_{\mathrm{i}}=5.3 \mathrm{nF}, \mathrm{L}_{\mathrm{i}}=0$.

Serial Interface Bill:

$\mathrm{V}_{\text {max }}\left(\mathrm{U}_{\mathrm{i}}\right)=20 \mathrm{~V}, \mathrm{C}_{\mathrm{i}}=0, \mathrm{~L}_{\mathrm{i}}=0$,
$\mathrm{V}_{\text {oc }}\left(\mathrm{U}_{0}\right)=7.88 \mathrm{~V}, \mathrm{C}_{\mathrm{a}}\left(\mathrm{C}_{0}\right)=650 \mathrm{nF}, \mathrm{L}_{\mathrm{a}}\left(\mathrm{L}_{0}\right)=10 \mathrm{mH}$.

External Position Sensor:

$\mathrm{V}_{\text {oc }}\left(\mathrm{U}_{\mathrm{o}}\right)=7.88 \mathrm{~V}, \mathrm{C}_{\mathrm{a}}\left(\mathrm{C}_{\mathrm{o}}\right)=1 \mu \mathrm{~F}, \mathrm{~L}_{\mathrm{a}}\left(\mathrm{L}_{\mathrm{o}}\right)=10 \mathrm{mH}$, or $\mathrm{C}_{\mathrm{i}}=66 \mathrm{nF}, \mathrm{L}_{\mathrm{i}}=370 \mu \mathrm{H}$.
Leakage Detection:
$\mathrm{C}_{\mathrm{i}}=5.3 \mathrm{nF}, \mathrm{C}_{0}=1.4 \mathrm{nF}$.

Binary Input:

$\mathrm{V}_{\text {max }}\left(\mathrm{U}_{\mathrm{i}}\right)=30 \mathrm{~V}, \mathrm{C}_{\mathrm{i}}=56.3 \mathrm{nF}, \mathrm{L}_{\mathrm{i}}=0$.
$\mathrm{a}=$ Proximity Switches 0 (not provided), or 1 (provided).
$\mathrm{b}=$ Venting Function 0 (not provided), or 1 (Solenoid valve 24 V DC) or 2 (Forced venting 24 V DC).
$\mathrm{c}=$ Position indicator 0 (not provided), or 1 (Position transmitter), or 2 (Leakage Detection), or 3 (Binary Input).
$\mathrm{d}=$ External position sensor 0 (not provided), or 1 (provided).
$\mathrm{e}=$ Emergency shutdown $0(3.8 \mathrm{~mA})$, or $1(4.4 \mathrm{~mA})$.
$\mathrm{f}=$ Body Material 0 (Die-cast aluminum), or 1 (Stainless Steel).
$\mathrm{g}=$ Housing cover 00 (Cover standard version), or 02 (Cover without window).

Equipment Ratings:

Intrinsically safe for use in Class I, II, III, Division 1, Groups A, B, C, D, E, F and G; Class I, Zone 0, IIC in accordance with control drawing nos. Addendum to EB 8384-2EN, pages 7-11, Addendum to EB 8384-3EN, pages 7-11 and Addendum to EB 8384-6EN, pages 7-12. Nonincendive with Nonincendive Field Wiring for Class I, Division 2, Groups A, B, C and D; Suitable for Class II, III, Division 2, Groups F and G or E, F and G indoor/outdoor Type 4X hazardous (Classified) Locations.

Member of the FM Global Group
This certifies that the equipment described has been found to comply with the following Approval Standards and other documents:

Class 3600	2011
Class 3610	2010
Class 3611	2004
Class 3810	2005
NEMA-250	2003
ANSI/ISA-60079-0	2009
ANSI/ISA-60079-11	2009

Original Project ID: 3012394
Approval Granted: December 4, 2002

Subsequent Revision Reports / Date Approval Amended

Report Number	Date	Report Number	Date
3018702	$02 / 02 / 2004$		
3034227	$11 / 03 / 2008$		
3042057	$06 / 06 / 2011$		
Reissued	August 11, 2011		
3044364	November 5, 2014		

FM Approvals LLC

JE. Marquedant
5 November 2014
Group Manager, Electrical

